Non-linear Learning for Statistical Machine Translation
نویسندگان
چکیده
Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains that each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit model on the current data. In this paper, we propose a nonlinear modeling for the quality of translation hypotheses based on neural networks, which allows more complex interaction between features. A learning framework is presented for training the non-linear models. We also discuss possible heuristics in designing the network structure which may improve the non-linear learning performance. Experimental results show that with the basic features of a hierarchical phrase-based machine translation system, our method produce translations that are better than a linear model.
منابع مشابه
Non-linear Learning for Statistical Machine Translation
Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains that each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit m...
متن کاملLocally Non-Linear Learning for Statistical Machine Translation via Discretization and Structured Regularization
Linear models, which support efficient learning and inference, are the workhorses of statistical machine translation; however, linear decision rules are less attractive from a modeling perspective. In this work, we introduce a technique for learning arbitrary, rule-local, nonlinear feature transforms that improve model expressivity, but do not sacrifice the efficient inference and learning asso...
متن کاملLog-linear weight optimisation via Bayesian Adaptation in Statistical Machine Translation
We present an adaptation technique for statistical machine translation, which applies the well-known Bayesian learning paradigm for adapting the model parameters. Since state-of-the-art statistical machine translation systems model the translation process as a log-linear combination of simpler models, we present the formal derivation of how to apply such paradigm to the weights of the log-linea...
متن کاملLearning a Log-Linear Model with Bilingual Phrase-Pair Features for Statistical Machine Translation
متن کامل
Online adaptation strategies for statistical machine translation in post-editing scenarios
One of the most promising approaches to machine translation consists in formulating the problem by means of a pattern recognition approach. By doing so, there are some tasks in which online adaptation is needed in order to adapt the system to changing scenarios. In the present work, we perform an exhaustive comparison of four online learning algorithms when combined with two adaptation strategi...
متن کامل